Klasifikasi Sentimen Komentar Youtube Demonstrasi DPR RI Menggunakan Support Vector Machine

Authors

  • Siti Aulia Rahmadhani Universitas Negeri Surabaya, Indonesia
  • Lia Dwi Rusanti Universitas Negeri Surabaya, Indonesia
  • Harun Al Rosyid Universitas Negeri Surabaya, Indonesia

DOI:

https://doi.org/10.29240/arcitech.v5i2.15316

Keywords:

Classification, Sentiment Analysis, Youtube Comments, Suport Vector Machine, DPR RI

Abstract

Demonstrations against the Indonesian House of Representatives (DPR RI) have triggered extensive public opinion flows on social media; however, sentiment mapping of Indonesian-language comments on YouTube live broadcasts of political issues still requires more structured methodological reporting and evaluation. This study aims to classify public sentiment from 1,493 YouTube comments related to DPR RI demonstrations using the Support Vector Machine (SVM) algorithm. Data were collected via the YouTube Data API and subsequently processed through text cleaning, case folding, normalization, tokenization, stopword removal, and stemming. Sentiment labeling was performed using an Indonesian lexicon-based approach to generate three sentiment classes (positive, negative, and neutral), with neutral sentiment being dominant. Feature representation was constructed using CountVectorizer, and the SVM model was trained using an 80:20 split for training and testing data. Model performance was evaluated using accuracy, precision, recall, and F1-score metrics, achieving an accuracy of 92.4% (weighted performance of 0.924). Word frequency analysis was also employed to identify dominant terms within each sentiment class. These findings demonstrate the effectiveness of SVM in mapping digital public perceptions on political issues and highlight its potential to support data-driven policy evaluation.

Downloads

Download data is not yet available.

Author Biographies

Siti Aulia Rahmadhani, Universitas Negeri Surabaya

Program Studi Pendidikan Teknologi Informasi, Universitas Negeri Surabaya

Lia Dwi Rusanti, Universitas Negeri Surabaya

Program Studi Pendidikan Teknologi Informasi, Universitas Negeri Surabaya

Harun Al Rosyid, Universitas Negeri Surabaya

Program Studi Pendidikan Teknologi Informasi, Universitas Negeri Surabaya

References

Ahfaz, A., Ramdani, R., Pratama, Y. B., Pramudyantoro, A., Altiarika, E., & Wahyuzi, Z. (2025). Perbandingan sentimen komentar YouTube pada video promosi bisnis kuliner di Bangka Belitung menggunakan algoritma machine learning. Journal of Information Technology and Society (JITS), 3(1). https://jits.unmuhbabel.ac.id/

Anadas, S., Suryono, R. R., Studi, P., Informasi, S., Teknik, F., Teknokrat, U., Lampung, B., Studi, P., Ilmu, M., Teknik, F., Teknokrat, U., & Lampung, B. (2025). Analisis sentimen publik terhadap program Lapor Mas Wapres periode 2024 di media sosial X menggunakan metode Naive Bayes dan Support Vector Machine (SVM). Jurnal Pendidikan dan Teknologi Indonesia (JPTI), 5(8), 2183-2192. https://doi.org/10.52436/1.jpti.934

Arsini, Y., Azzahra, H., Tarigan, K. S., & Azhari, I. (2023). Pengaruh media sosial terhadap kesehatan mental pada remaja. Journal Research and Education Studies, 3(2), 32-38. https://doi.org/10.61994/educate.v1i1.114

Asbanu, N. R., Belo, C. M. F., & Saingo, Y. A. (2025). Analisis peran DPR dalam menyuarakan kepentingan rakyat berdasarkan Sila Keempat Pancasila. Jurnal Ilmiah Multidisiplin Indonesia, 3(1), 120-134. https://doi.org/10.61404/jimi.v3i1.364

Asrianto, R., & Herwinanda, M. (2022). Analisis sentimen kenaikan harga kebutuhan pokok di media sosial YouTube menggunakan algoritma support vector machine. Jurnal Computer Science and Information Technology, 3(3), 431-440. https://doi.org/10.37859/coscitech.v3i3.4368

Cetin, V., & Yildiz, O. (2022). A comprehensive review on data preprocessing techniques in data analysis. Pamukkale Universitesi Muhendislik Bilimleri Dergisi, 28(2), 299-312. https://doi.org/10.5505/pajes.2021.62687

Chairani Siregar, S., Adek, R. T., & Fitri, Z. (2024). Sentiment analysis of comments on YouTube channel beauty vlogger in Indonesian language using support vector machine method. Proceedings of International Conference on Multidisciplinary Engineering (ICOMDEN), 2, 1-6. https://doi.org/10.29103/icomden.v2.xxxx

DataReportal. (2025, December). Essential YouTube Statistics. https://datareportal.com/essential-youtube-stats

Heydarian, M., Doyle, T. E., & Samavi, R. (2022). MLCM: Multi-label confusion matrix. IEEE Access, 10, 19083-19095.

Hidayat, Santoso, F., & Lidimillah, L. F. (2024b). Analisis sentimen pengguna YouTube tentang Rohingya menggunakan algoritma SVM (Support Vector Machine). Jurnal Teknologi Terapan, 8(3), 1729-1738. https://doi.org/10.33379/gtech.v8i3.4497

Hou, Q., Han, M., Qu, F., & He, J. S. (2021). Understanding social media beyond text: A reliable practice on Twitter. Computational Social Networks, 8(4). https://doi.org/10.1186/s40649-021-00088-x

Jamilah, F., & Wahyuni, P. (2020). Ujaran kebencian dalam kolom komentar YouTube pada tahun politik pemilihan presiden 2019. Jurnal Penelitian Pendidikan Bahasa Indonesia, Daerah, dan Asing, 3(2), 325-341. https://doi.org/10.31540/silamparibisa.v3i2.1109

Jelly, G. Y., & Prihana, E. (2025). Peran dan tantangan DPR-RI dalam mewujudkan demokrasi di Indonesia. Jurnal Kajian Pemerintah & Kebijakan Publik, 1(2), 53-63.

Junaedi, Gunawan, A. H., Kuswanto, V., & Jonathan. (2024). Eksplorasi algoritma support vector machine untuk analisis sentimen destinasi wisata di Indonesia. Bit-Tech (Binary Digital - Technology), 7(2). https://doi.org/10.32877/bt.v7i2.1810

Khder, M. A. (2021). Web scraping or web crawling: State of art, techniques, approaches and application. International Journal of Advances in Soft Computing & Its Applications, 13(3). https://doi.org/10.15849/IJASCA.211128.11

Kusuma, I. H., & Cahyono, N. (2023). Analisis sentimen masyarakat terhadap penggunaan e-commerce menggunakan algoritma k-nearest neighbor. Jurnal Informatika: Jurnal Pengembangan IT, 8(3), 302-307. https://doi.org/10.30591/jpit.v8i3.5734

Mao, Y., Liu, Q., & Zhang, Y. (2024). Sentiment analysis methods, applications, and challenges: A systematic literature review. Journal of King Saud University - Computer and Information Sciences, 36(4), 102048. https://doi.org/10.1016/j.jksuci.2024.102048

Muhayat, T., Fauzi, A., & Indra, J. (2023). Analisis sentimen terhadap komentar video YouTube menggunakan support vector machines. Progresif: Jurnal Ilmiah Komputer, 19(1). https://doi.org/10.35889/progresif.v19i1.1060

Nursalim, A., & Novita, R. (2023). Sentiment analysis of comments on Google Play Store, Twitter and YouTube to the MyPertamina application with support vector machine. Jurnal Teknik Informatika (JUTIF), 4(6), 1305-1312. https://doi.org/10.52436/1.jutif.2023.4.6.1059

O'Connor, B., Balasubramanyan, R., Routledge, B. R., & Smith, N. A. (2010). From tweets to polls: Linking text sentiment to public opinion time series. Proceedings of the International AAAI Conference on Web and Social Media.

Octiva, C. S., Fajri, T. I., Sulistiarini, E. B., Suharjo, & Nuryanto, U. W. (2024). Penggunaan teknik data mining untuk analisis perilaku pengguna pada media sosial. Jurnal Minfo Polgan, 13, 1074-1078. https://doi.org/10.33395/jmp.v13i1.13936

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1-2), 1-135. https://doi.org/10.1561/1500000011

Permana, T. D., Pratama, Y. B., Wahyuzi, Z., Altiarika, E., & Pramudyantoro, A. (2025). Perbandingan performa algoritma Naive Bayes dan terhadap industri esports di Indonesia. Jurnal Ilmiah Nusantara, 2(6), 1391-1399. https://doi.org/10.61722/jinu.v2i6.6753

Putri, S. R., Asrianda, A., & Rosnita, L. (2025). Sentiment analysis of YouTube and GoTube reviews on Google Play using the support vector machine (SVM) method in Indonesia. Journal of Applied Informatics and Computing (JAIC), 9(3). https://doi.org/10.30871/jaic.v9i3.9461

Riwanto, M. H., Ardhiyansyah, P., Alfiansyah, R. A. A. A., Waek, G., & Fahlapi6, R. (2025). Penerapan program makan bergizi gratis adalah langkah. Jurnal Multidisiplin Saintek, 6(12), 1-14.

Rizky, G. P., & Alrasyid, W. (2025). AI-Based Sentiment Analysis of Social Media to Detect Public Opinion on Government Policies. In Journal Basic Science and Technology (Vol. 14, Issue 2).

Rodriguez-Ibanez, M., Casanez-Ventura, A., Castejon-Mateos, F., & Cuenca-Jimenez, P.-M. (2023). A review on sentiment analysis from social media platforms. Expert Systems with Applications, 223, 119862. https://doi.org/10.1016/j.eswa.2023.119862

Santoso, B. A., Nugroho, I., & Asyfiya, D. U. (2025). Perbandingan algoritma Naive Bayes, support vector machine, dan random forest untuk analisis sentimen komentar politik YouTube. TIN: Terapan Informatika Nusantara, 6(4), 391-400. https://doi.org/10.47065/tin.v6i4.8326

Saputra, A. N. A., Saputro, R. E., & Saputra, D. I. S. (2025). Enhancing sentiment analysis accuracy using SVM and slang word normalization on YouTube comments. Sinkron: Jurnal dan Penelitian Teknik Informatika, 9(2), 687-699. https://doi.org/10.33395/sinkron.v9i2.14613

Septiana, L., Yasin, V., & Sianipar, A. Z. (2025). Analyzing public sentiment on youtube comments regarding the free lunch policy using the Support Vector Machine (SVM) algorithm. 14(1), 129–138. www.ejournal.isha.or.id/index.php/Mandiri

Siswoyo, B., & Utomo, N. A. P. (2025). Pemanfaatan machine learning untuk klasifikasi sentimen pelanggan pada media sosial. Jurnal Teknologi Informasi Digital, 1(1), 29-34.

Wahyuni, N. A., Ayu, D. P., & Irsyad, H. (2024a). Analisis sentimen di YouTube terhadap kenaikan UKT menggunakan metode support vector machine. Journal of Computer Science and Artificial Intelligence, 4(1), 57-71. https://doi.org/10.29240/arcitech.v4i1.10829

Yulita, I. N., Wijaya, V., Rosadi, R., Sarathan, I., Djuyandi, Y., & Prabuwono, A. S. (2023). Analysis of government policy sentiment regarding vacation during the COVID-19 pandemic using the bidirectional encoder representation from transformers (BERT). Data, 8(3), 46. https://doi.org/10.3390/data8030046

Zhafira, D. F., Rahayudi, B., & Indriati, I. (2021). Analisis sentimen kebijakan Kampus Merdeka menggunakan naive bayes dan pembobotan TF-IDF berdasarkan komentar pada YouTube. Jurnal Sistem Informasi, Teknologi Informasi, dan Edukasi Sistem Informasi, 2(1), 55-63. https://doi.org/10.25126/justsi.v2i1.24

Downloads

Published

30-12-2025

How to Cite

Rahmadhani, S. A., Rusanti, L. D., & Rosyid, H. A. (2025). Klasifikasi Sentimen Komentar Youtube Demonstrasi DPR RI Menggunakan Support Vector Machine. Arcitech: Journal of Computer Science and Artificial Intelligence, 5(2), 356–375. https://doi.org/10.29240/arcitech.v5i2.15316

Citation Check