Klasifikasi Motif Kain Jumputan Palembang Menggunakan Metode CNN dengan Arsitektur Resnet-50

Authors

  • Muhammad Mauladi Universitas Multi Data Palembang, Indonesia
  • Dedy Hermanto Universitas Multi Data Palembang, Indonesia

DOI:

https://doi.org/10.29240/arcitech.v5i2.15310

Keywords:

CNN, ResNet-50, transfer learning, Image Classification, Palembang Tie-dye Fabric, Traditional textile Motifs

Abstract

This study develops an automated classification system for Palembang jumputan textile motifs based on computer vision to address inter-motif pattern similarities that often challenge non-expert users and hinder the digital documentation of textile cultural heritage. Unlike traditional textile studies that typically employ generic Convolutional Neural Networks (CNNs), this research applies transfer learning using the ResNet-50 architecture on a primary dataset consisting of five motif classes: lilin, titik 7, titik 9, bunga tabur, and akoprin daun. The dataset is divided into training, validation, and testing sets, followed by preprocessing and image augmentation to enhance data variability. The model is trained with learning rate tuning, and the best configuration achieves a training accuracy of 95.57%, a validation accuracy of 87.33%, and a testing accuracy of 88%. Evaluation using a classification report and confusion matrix indicates excellent performance for the titik 9 and bunga tabur motifs, with precision and recall values approaching 1.00, while misclassifications still occur in the lilin motif due to visual similarity. These results confirm the effectiveness of ResNet-50 for jumputan motif classification and support cultural preservation through faster and more consistent motif identification.

Downloads

Download data is not yet available.

References

Azzahra, N. A., Fathinah, A., & Zahwa, D. N. (2025). Pengembangan motif jumputan Palembang dengan pendekatan geometri menggunakan aplikasi GeoGebra. http://ejurnal.mipa.unsri.ac.id/index.php/jps/index

Agusniar, C., & Adelia, D. (2024). Penerapan Convolutional Neural Network pada Klasifikasi Jenis Ras Kucing Menggunakan ResNet50V2. In Journal Information Engineering and Educational Technology (Vol. 08).

Akimova, E. N., Bersenev, A. Y., Deikov, A. A., Kobylkin, K. S., Konygin, A. V., Mezentsev, I. P., & Misilov, V. E. (2021). A survey on software defect prediction using deep learning. In Mathematics (Vol. 9, Issue 11). MDPI AG. https://doi.org/10.3390/math9111180

Al-Majed, R., & Hussain, M. (2024). Entropy-Based Ensemble of Convolutional Neural Networks for Clothes Texture Pattern Recognition. Applied Sciences (Switzerland), 14(22). https://doi.org/10.3390/app142210730

Anastasya, D., Fahri, S., Situmorang, S., & Ramadhani, F. (2024). Implementasi Metode Convolutional Neural Network (CNN) Dalam Klasifikasi Motif Batik (Vol. 18, Issue 1). https://journal.fkom.uniku.ac.id/ilkom

Arifin, S. (2024). Klasifikasi Motif Batik Menggunakan Metode Convolutional Neural Network (CNN) Dengan Multi Class Clasification. Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi, 10(1).

Atif, M., Muthrofin, F., Erwanto, D., & Yanuartanti, I. (2024). Convolutional Neural Network untuk Klasifikasi Batik Tenun Ikat Bandar Berdasarkan Fitur Warna dan Tekstur. In Journal homepage. https://ejournal.unuja.ac.id/index.php/jeecom

Berliani, T., Rahardja, E., & Septiana, L. (2023). Perbandingan Kemampuan Klasifikasi Citra X-ray Paru-paru menggunakan Transfer Learning ResNet-50 dan VGG-16. Journal of Medicine and Health, 5(2), 123–135. https://doi.org/10.28932/jmh.v5i2.6116

Cao, Z., Sun, C., Wang, W., Zheng, X., Wu, J., & Gao, H. (2021). Multi-modality fusion learning for the automatic diagnosis of optic neuropathy. Pattern Recognition Letters, 142, 58–64. https://doi.org/https://doi.org/10.1016/j.patrec.2020.12.009

Chen, C., Mat Isa, N. A., & Liu, X. (2025). A review of convolutional neural network based methods for medical image classification. Computers in Biology and Medicine, 185, 109507. https://doi.org/10.1016/J.COMPBIOMED.2024.109507

Dwinora Cahyati, I., & Devella, S. (2024). Pengenalan Motif Songket Palembang Menggunakan Convolutional Neural Network dengan Arsitektur ResNet-50. Jurnal Algoritme, 5(1), 78–87. https://doi.org/10.35957/algoritme.xxxx

Gorriz, J. M., Clemente, R. M., Segovia, F., Ramirez, J., Ortiz, A., & Suckling, J. (2024). Is K-fold cross validation the best model selection method for Machine Learning? http://arxiv.org/abs/2401.16407

Hussain, M. A. I., Khan, B., Wang, Z., & Ding, S. (2020). Woven fabric pattern recognition and classification based on deep convolutional neural networks. Electronics (Switzerland), 9(6), 1–12. https://doi.org/10.3390/electronics9061048

Irwan, M. (2020). Identifikasi Motif Kain Jumputan Palembang Menggunakan Metode Jaringan Syaraf Tiruan.

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., & Shah, M. (2022). Transformers in Vision: A Survey. ACM Comput. Surv., 54(10s). https://doi.org/10.1145/3505244

Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2022). A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 6999–7019. https://doi.org/10.1109/TNNLS.2021.3084827

Muhammad Mauladi. (2025). DataSetJumputan. Google Drive. https://drive.google.com/drive/folders/1e0UuJdeLwoIVLJm7KpWO5QQhPEL52Qex?usp=sharing

Rustiana Dewi, N., Susanti, E., Hanum, H., Cahyawati, D., Alwine Zayanti, D., Sriwijaya, U., & Jurusan Matematika, F. (2022). Pengembangan motif fraktal pada usaha produksi kain jumputan palembang improved of fractal patterns in the production of jumputan palembang. In integritas : Jurnal Pengabdian (Vol. 6, Issue 1).

Taye, M. M. (2023). Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions. In Computation (Vol. 11, Issue 3). MDPI. https://doi.org/10.3390/computation11030052

Whisnu Wiratama, R. (2023). Implementasi dan Klasifikasi Jenis-Jenis Menggunakan Algoritma Convolutional Neural Network (CNN) Dengan Model Arsitektur ResNet.

Yang, S., Xiao, W., Zhang, M., Guo, S., Zhao, J., & Shen, F. (2023). Image Data Augmentation for Deep Learning: A Survey. http://arxiv.org/abs/2204.08610

Downloads

Published

30-12-2025

How to Cite

Mauladi, M., & Hermanto, D. (2025). Klasifikasi Motif Kain Jumputan Palembang Menggunakan Metode CNN dengan Arsitektur Resnet-50. Arcitech: Journal of Computer Science and Artificial Intelligence, 5(2), 332–355. https://doi.org/10.29240/arcitech.v5i2.15310

Citation Check