Klasifikasi Motif Kain Jumputan Palembang Menggunakan Metode CNN dengan Arsitektur Resnet-50
DOI:
https://doi.org/10.29240/arcitech.v5i2.15310Keywords:
CNN, ResNet-50, transfer learning, Image Classification, Palembang Tie-dye Fabric, Traditional textile MotifsAbstract
This study develops an automated classification system for Palembang jumputan textile motifs based on computer vision to address inter-motif pattern similarities that often challenge non-expert users and hinder the digital documentation of textile cultural heritage. Unlike traditional textile studies that typically employ generic Convolutional Neural Networks (CNNs), this research applies transfer learning using the ResNet-50 architecture on a primary dataset consisting of five motif classes: lilin, titik 7, titik 9, bunga tabur, and akoprin daun. The dataset is divided into training, validation, and testing sets, followed by preprocessing and image augmentation to enhance data variability. The model is trained with learning rate tuning, and the best configuration achieves a training accuracy of 95.57%, a validation accuracy of 87.33%, and a testing accuracy of 88%. Evaluation using a classification report and confusion matrix indicates excellent performance for the titik 9 and bunga tabur motifs, with precision and recall values approaching 1.00, while misclassifications still occur in the lilin motif due to visual similarity. These results confirm the effectiveness of ResNet-50 for jumputan motif classification and support cultural preservation through faster and more consistent motif identification.
Downloads
References
Azzahra, N. A., Fathinah, A., & Zahwa, D. N. (2025). Pengembangan motif jumputan Palembang dengan pendekatan geometri menggunakan aplikasi GeoGebra. http://ejurnal.mipa.unsri.ac.id/index.php/jps/index
Agusniar, C., & Adelia, D. (2024). Penerapan Convolutional Neural Network pada Klasifikasi Jenis Ras Kucing Menggunakan ResNet50V2. In Journal Information Engineering and Educational Technology (Vol. 08).
Akimova, E. N., Bersenev, A. Y., Deikov, A. A., Kobylkin, K. S., Konygin, A. V., Mezentsev, I. P., & Misilov, V. E. (2021). A survey on software defect prediction using deep learning. In Mathematics (Vol. 9, Issue 11). MDPI AG. https://doi.org/10.3390/math9111180
Al-Majed, R., & Hussain, M. (2024). Entropy-Based Ensemble of Convolutional Neural Networks for Clothes Texture Pattern Recognition. Applied Sciences (Switzerland), 14(22). https://doi.org/10.3390/app142210730
Anastasya, D., Fahri, S., Situmorang, S., & Ramadhani, F. (2024). Implementasi Metode Convolutional Neural Network (CNN) Dalam Klasifikasi Motif Batik (Vol. 18, Issue 1). https://journal.fkom.uniku.ac.id/ilkom
Arifin, S. (2024). Klasifikasi Motif Batik Menggunakan Metode Convolutional Neural Network (CNN) Dengan Multi Class Clasification. Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi, 10(1).
Atif, M., Muthrofin, F., Erwanto, D., & Yanuartanti, I. (2024). Convolutional Neural Network untuk Klasifikasi Batik Tenun Ikat Bandar Berdasarkan Fitur Warna dan Tekstur. In Journal homepage. https://ejournal.unuja.ac.id/index.php/jeecom
Berliani, T., Rahardja, E., & Septiana, L. (2023). Perbandingan Kemampuan Klasifikasi Citra X-ray Paru-paru menggunakan Transfer Learning ResNet-50 dan VGG-16. Journal of Medicine and Health, 5(2), 123–135. https://doi.org/10.28932/jmh.v5i2.6116
Cao, Z., Sun, C., Wang, W., Zheng, X., Wu, J., & Gao, H. (2021). Multi-modality fusion learning for the automatic diagnosis of optic neuropathy. Pattern Recognition Letters, 142, 58–64. https://doi.org/https://doi.org/10.1016/j.patrec.2020.12.009
Chen, C., Mat Isa, N. A., & Liu, X. (2025). A review of convolutional neural network based methods for medical image classification. Computers in Biology and Medicine, 185, 109507. https://doi.org/10.1016/J.COMPBIOMED.2024.109507
Dwinora Cahyati, I., & Devella, S. (2024). Pengenalan Motif Songket Palembang Menggunakan Convolutional Neural Network dengan Arsitektur ResNet-50. Jurnal Algoritme, 5(1), 78–87. https://doi.org/10.35957/algoritme.xxxx
Gorriz, J. M., Clemente, R. M., Segovia, F., Ramirez, J., Ortiz, A., & Suckling, J. (2024). Is K-fold cross validation the best model selection method for Machine Learning? http://arxiv.org/abs/2401.16407
Hussain, M. A. I., Khan, B., Wang, Z., & Ding, S. (2020). Woven fabric pattern recognition and classification based on deep convolutional neural networks. Electronics (Switzerland), 9(6), 1–12. https://doi.org/10.3390/electronics9061048
Irwan, M. (2020). Identifikasi Motif Kain Jumputan Palembang Menggunakan Metode Jaringan Syaraf Tiruan.
Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., & Shah, M. (2022). Transformers in Vision: A Survey. ACM Comput. Surv., 54(10s). https://doi.org/10.1145/3505244
Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2022). A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 6999–7019. https://doi.org/10.1109/TNNLS.2021.3084827
Muhammad Mauladi. (2025). DataSetJumputan. Google Drive. https://drive.google.com/drive/folders/1e0UuJdeLwoIVLJm7KpWO5QQhPEL52Qex?usp=sharing
Rustiana Dewi, N., Susanti, E., Hanum, H., Cahyawati, D., Alwine Zayanti, D., Sriwijaya, U., & Jurusan Matematika, F. (2022). Pengembangan motif fraktal pada usaha produksi kain jumputan palembang improved of fractal patterns in the production of jumputan palembang. In integritas : Jurnal Pengabdian (Vol. 6, Issue 1).
Taye, M. M. (2023). Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions. In Computation (Vol. 11, Issue 3). MDPI. https://doi.org/10.3390/computation11030052
Whisnu Wiratama, R. (2023). Implementasi dan Klasifikasi Jenis-Jenis Menggunakan Algoritma Convolutional Neural Network (CNN) Dengan Model Arsitektur ResNet.
Yang, S., Xiao, W., Zhang, M., Guo, S., Zhao, J., & Shen, F. (2023). Image Data Augmentation for Deep Learning: A Survey. http://arxiv.org/abs/2204.08610
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Muhammad Mauladi, Dedy Hermanto

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Arcitech: Journal of Computer science and Artificial Intelligence agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).







