Optimasi Hyperparameter CNN dengan Arsitektur VGG16 Menggunakan Grid Search Untuk Klasifikasi Penyakit Buah Delima
DOI:
https://doi.org/10.29240/arcitech.v5i2.15175Keywords:
Buah Delima, CNN, Grid Search, Klasifikasi Penyakit, VGG16Abstract
Early detection of pomegranate fruit diseases is crucial to reduce yield losses and improve harvest quality; however, visual identification in the field is often subjective and difficult due to the similarity of symptoms among different diseases. This study aims to develop a pomegranate fruit disease classification model using a Convolutional Neural Network (CNN) based on the VGG16 architecture, optimized through the Grid Search method. The dataset consists of five classes: 886 Alternaria samples, 116 Anthracnose samples, 966 Bacterial Blight samples, 631 Cercospora samples, and 1,450 Healthy samples, resulting in a total of 5,099 images. The dataset underwent preprocessing and data augmentation to increase variability and prevent overfitting. After balancing the dataset, it was split into 70% training data, 20% validation data, and 10% testing data. Hyperparameters such as epoch, batch size, learning rate, and optimizer were evaluated using Grid Search to determine the optimal configuration. The results indicate that the best performance was achieved using 100 epochs, a batch size of 32, a learning rate of 0.0001, and the Adam optimizer. The proposed model achieved a testing accuracy of 99.59%, with precision, recall, and F1-score values of 0.996. These findings demonstrate that the optimized VGG16-based CNN model is highly effective in accurately classifying pomegranate fruit diseases.
Downloads
References
Abbas, R., Aamir, M., Saeed, F., Shankar, A., Kaur, J., Nadeem, R., Chauhan, A. S., Imran, A., Afzaal, M., & Kinki, A. B. (2025). Development and nutritional evaluation of pomegranate peel enriched bars. PLOS ONE, 20(1). https://doi.org/10.1371/journal.pone.0315830
Abdel Rahman Shalaby, F., Misroni, & Wahidi, A. (2019). Pengklasifikasian dan penataan ulang buku di Perpustakaan SDN 15 Gelumbang. 1(1).
Abdulkadirov, R., Lyakhov, P., & Nagornov, N. (2023). Survey of optimization algorithms in modern neural networks. Mathematics, 11(11), 2466. https://doi.org/10.3390/math11112466
Agustina, A., Yanto, F., Budianita, E., Iskandar, I., & Syafria, F. (2024). Klasifikasi penyakit tanaman padi menggunakan metode CNN arsitektur DenseNet-121 dan augmentasi data. JOISIE (Journal of Information Systems and Informatics Engineering), 8(1), 124-134. https://doi.org/10.35145/joisie.v8i1.4256
Anggraeni, A. M., Hermanto, T. I., & Nugroho, I. M. (2025). Klasifikasi penyakit daun singkong menggunakan convolutional neural network (CNN) dengan arsitektur VGG16 berbasis Android. Jurnal Teknologi Terpadu, 11(1), 53-59.
Anhar, & Adi Putra, R. (2023). Perancangan dan implementasi self-checkout system pada toko ritel menggunakan convolutional neural network (CNN). ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 11(2), 466. https://doi.org/10.26760/elkomika.v11i2.466
Simanjuntak, A., Lumbantoruan, R., Sianipar, K., Gultom, R., Simaremare, M., Situmeang, S., & Panggabean, E. (2024). Studi dan analisis hyperparameter tuning IndoBERT dalam pendeteksian berita palsu. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 13(1), 60-67. https://doi.org/10.22146/jnteti.v13i1.8532
Asy Syifa, S., & Amelia Dewi, I. (2022). Arsitektur ResNet-152 dengan perbandingan optimizer Adam dan RMSProp untuk mendeteksi penyakit paru-paru. MIND (Multimedia Artificial Intelligent Networking Database), 7(2), 139-150. https://doi.org/10.26760/mindjournal.v7i2.139-150
Auliaddina, S., & Arifin, T. (2024). Penggunaan data augmentasi dan hyperparameter tuning dalam klasifikasi jenis batik menggunakan model CNN. SISTEMASI: Jurnal Sistem Informasi, 13(1), 114-128. http://sistemasi.ftik.unisi.ac.id
Azmi, K., Defit, S., & Sumijan. (2023). Implementasi convolutional neural network (CNN) untuk klasifikasi batik tanah liat Sumatera Barat. Jurnal Unitek, 16(1).
Bezdan, T., & Bacanin Dzakula, N. (2019). Convolutional neural network layers and architectures. SINTEZA 2019, 445-451. https://doi.org/10.15308/sinteza-2019-445-451
Bock, S., & Weis, M. (2019). A proof of local convergence for the Adam optimizer. Proceedings of the International Joint Conference on Neural Networks (IJCNN). https://doi.org/10.1109/IJCNN.2019.8852239
Chan, L., Tseng, Y., Liu, C., & Liang, C. (2021). Fermented pomegranate extracts protect against oxidative stress and aging of skin. Journal of Cosmetic Dermatology, 21. https://doi.org/10.1111/jocd.14379
Kurniadi, D., Shidiq, R. M., & Mulyani, A. (2025). Perbandingan penggunaan optimizer dalam klasifikasi sel darah putih menggunakan convolutional neural network. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 14(1), 77-86. https://doi.org/10.22146/jnteti.v14i1.17162
Dewi Linda, K. S., & Dwi Hartanto, A. (2024). Studi literatur mengenai klasifikasi citra kucing dengan menggunakan deep learning: Convolutional neural network (CNN). Journal of Electrical Engineering and Computer (JEECOM), 129-137. https://doi.org/10.33650/jeecom.v4i2
Fitra Maulana, F., & Rochmawati, N. (2019). Klasifikasi citra buah menggunakan convolutional neural network. JINACS (Journal of Informatics and Computer Science), 1(2), 104-108.
Ghandi, S., Nugroho, I. M., & Ramadhan, Y. (2024). Penerapan metode convolutional neural network (CNN) dalam aplikasi pendeteksi penyakit daun tanaman kentang berbasis Android. JATI (Jurnal Mahasiswa Teknik Informatika), 8(5).
Great Learning. (2025, February 12). Introduction to VGG16 - What is VGG16? https://www.mygreatlearning.com/blog/introduction-to-vgg16/
Gulmez, B. (2025). A comprehensive review of convolutional neural networks based disease detection strategies in potato agriculture. Potato Research, 68(2), 1295-1329. https://doi.org/10.1007/s11540-024-09786-1
Hong, T.-Y., & Chen, C.-C. (2023). Hyperparameter optimization for convolutional neural network by opposite-based particle swarm optimization and an empirical study of photomask defect classification. Applied Soft Computing, 148, 110904. https://doi.org/10.1016/j.asoc.2023.110904
Jaiman, R. S., Purohit, J., Nakrani, B. R., Elangbam, P. D., & Pandya, K. S. (2024). Efficacy of fluopyram 250 g/L + trifloxystrobin 250 g/L SC against anthracnose disease of pomegranate. Asian Research Journal of Agriculture, 17(4), 1189-1201. https://doi.org/10.9734/arja/2024/v17i4634
Jang, J. Y., Kim, D., Im, E., & Kim, N. D. (2024). Therapeutic potential of pomegranate extract for women's reproductive health and breast cancer. Life, 14(10), 1264. https://doi.org/10.3390/life14101264
Jha, S. K., Misra, Y., Nyayadhish, R., Rawat, M. K., K, K. K., & Neelam, N. (2025). A CNN-driven image analysis approach for accurate detection of plant leaf diseases. International Journal of Engineering, Science and Information Technology, 5(4). https://doi.org/10.52088/ijesty.v5i4.1299
Laksono, F. B., & Fathurohman, A. (2024). Plant disease detection with convolution neural network: Combination of VGG16 and ResNet34 architectures for leaf classification. Jurnal Komputer dan Teknologi Informasi, 2(2). https://doi.org/10.26714/jkti.v2i2.13932
Liu, M., Yao, D., Liu, Z., Guo, J., & Chen, J. (2023). An improved Adam optimization algorithm combining adaptive coefficients and composite gradients based on randomized block coordinate descent. Computational Intelligence and Neuroscience, 2023, 4765891. https://doi.org/10.1155/2023/4765891
Madhavan, M. V., Thanh, D. N. H., Khamparia, A., Pande, S., Malik, R., & Gupta, D. (2021). Recognition and classification of pomegranate leaves diseases by image processing and machine learning techniques. Computers, Materials & Continua, 66(3), 2939-2955. https://doi.org/10.32604/cmc.2021.012466
Manjunatha, N., Sharma, J., Pokhare, S. S., Agarrwal, R., Patil, P. G., Sirsat, J. D., Chakranarayan, M. G., Bicchal, A., Ukale, A. S., & Marathe, R. A. (2022). Characterization of Alternaria and Colletotrichum species associated with pomegranate (Punica granatum L.) in Maharashtra State of India. Journal of Fungi, 8(10), 1040. https://doi.org/10.3390/jof8101040
Mansur, S. A., Deroyeen, A. F., Indriyanti, M. N., Annisak, A. K., Fajriati, D. R., & Amiruddin, M. (2022). Kandungan buah delima (Punica granatum L.) dalam perspektif Al-Qur'an, Sunnah, dan sains. Proceedings of International Pharmacy Ulul Albab Conference and Seminar (PLANAR), 2, 69. https://doi.org/10.18860/planar.v2i0.2128
Math, R. M., Dharwadkar, N. V., Sajjanar, V., & Deshmukh, M. N. (2024). Deep learning for precision grade-quality classification of pomegranates. 2024 International Conference on Innovation and Novelty in Engineering and Technology (INNOVA), 1-6. https://doi.org/10.1109/INNOVA63080.2024.10846982
Morales-Hernandez, A., Van Nieuwenhuyse, I., & Rojas Gonzalez, S. (2023). A survey on multi-objective hyperparameter optimization algorithms for machine learning. Artificial Intelligence Review, 56(8), 8043-8093. https://doi.org/10.1007/s10462-022-10359-2
Mumuni, A., & Mumuni, F. (2022). Data augmentation: A comprehensive survey of modern approaches. Array, 16, 100258. https://doi.org/10.1016/j.array.2022.100258
Ningsih, N. P., Suryadi, E., Bakti, L. D., & Imran, B. (2022). Klasifikasi penyakit early blight dan late blight pada tanaman tomat berdasarkan citra daun menggunakan metode CNN berbasis website. Jurnal Kecerdasan Buatan dan Teknologi Informasi (JKBTI), 1(3), 27-35.
Noorizki, A. Z., & Kusumawati, W. I. (2023). Perbandingan performa algoritma VGG16 dan VGG19 melalui metode CNN untuk klasifikasi varietas beras. Journal of Computer, Electronic, and Telecommunication, 4(2). https://doi.org/10.52435/complete.v4i2.387
Oktafanda, E. (2022). Klasifikasi citra kualitas bibit dalam meningkatkan produksi kelapa sawit menggunakan metode convolutional neural network (CNN). Jurnal Informatika Ekonomi Bisnis, 72-77. https://doi.org/10.37034/infeb.v4i3.143
Opara, I. K., Fawole, O. A., Kelly, C., & Opara, U. L. (2021). Quantification of on-farm pomegranate fruit postharvest losses and waste, and implications on sustainability indicators: South African case study. Sustainability, 13(9), 5168. https://doi.org/10.3390/su13095168
Pakruddin, B., & Hemavathy, R. (2024a). A comprehensive standardized dataset of numerous pomegranate fruit diseases for deep learning. Data in Brief, 54, 110284. https://doi.org/10.1016/j.dib.2024.110284
Pakruddin, B., & Hemavathy, R. (2024b). Development of a pomegranate fruit disease detection and classification model using deep learning. Indian Journal of Agricultural Research, 58, 1121-1130. https://doi.org/10.18805/IJARe.A-6281
Pakruddin, B., & Hemavathy, R. (2025). Performance evaluation of deep learning models for multiclass disease detection in pomegranate fruits. Indian Journal of Agricultural Research. https://doi.org/10.18805/ijare.a-6396
Paraijun, F., Nur Aziza, R., & Kuswardani, D. (2022). Implementasi algoritma convolutional neural network dalam mengklasifikasi kesegaran buah berdasarkan citra buah. KILAT, 11(1). https://doi.org/10.33322/kilat.v11i1.1458
Paul, P., Manishankar, S., & Satheesh Kumar, R. (2024). Disease detection and severity prediction of pomegranate fruit. 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1-7. https://doi.org/10.1109/ICCCNT61001.2024.10725059
Pradana, M. A., Maulana, R. I., Putra, R. S., Subairi, S., & Anggraeny, F. T. (2023). Klasifikasi penyakit tanaman tomat menggunakan metode convolutional neural network (CNN) VGG16. KERNEL: Jurnal Riset Inovasi Bidang Informatika dan Pendidikan Informatika, 4(2), 61-69. https://doi.org/10.31284/j.kernel.2023.v4i2.6829
Pratama, G. A., Puspaningrum, E. Y., & Maulana, H. (2024). Convolutional neural network dan faster region convolutional neural network untuk klasifikasi kualitas biji kopi Arabika. JITET (Jurnal Informatika dan Teknik Elektro Terapan), 12(3). https://doi.org/10.23960/jitet.v12i3.4887
Rahman, F. F., & Pratiwi, N. (2025). Identifikasi penyakit tumbuhan tomat dan anggur menggunakan CNN dengan arsitektur VGG-16. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 10(1), 270-279. https://doi.org/10.29100/jipi.v10i1.5663
Rochmawati, N., Hidayati, H. B., Yamasari, Y., Tjahyaningtijas, A. P., Yustanti, W., & Prihanto, A. (2021). Analisa learning rate dan batch size pada klasifikasi COVID menggunakan deep learning dengan optimizer Adam. JIEET: Journal Information Engineering and Educational Technology, 5(2).
Sajitha, P., Andrushia, A. D., Anand, N., Naser, M. Z., & Lubloy, E. (2024). A deep learning approach to detect diseases in pomegranate fruits via hybrid optimal attention capsule network. Ecological Informatics, 102859. https://doi.org/10.1016/j.ecoinf.2024.102859
Sameera, P., & Deshpande, A. A. (2024). Disease detection and classification in pomegranate fruit using hybrid convolutional neural network with honey badger optimization algorithm. International Journal of Food Properties, 27(1), 815-837. https://doi.org/10.1080/10942912.2024.2365927
Mashuri, A. S., Sunyoto, A., & Kusnawi. (2024). Klasifikasi penyakit pada daun cabai menggunakan arsitektur VGG16. Journal of Electrical Engineering and Computer (JEECOM), 6(2). https://doi.org/10.33650/jeecom.v4i2
Saputro, W., & Khairudin, A. (2022). Klasifikasi kualitas mutu buah delima dengan menggunakan ekstraksi gray level co-occurrence matrix (GLCM) dan k-nearest neighbor (KNN). JINTEKS, 4(3).
Shah, S. R., Qadri, S., Bibi, H., Shah, S. M. W., Sharif, M. I., & Marinello, F. (2023). Comparing Inception V3, VGG 16, VGG 19, CNN, and ResNet 50: A case study on early detection of a rice disease. Agronomy, 13(6), 1633. https://doi.org/10.3390/agronomy13061633
Sitaula, C., & Hossain, M. B. (2021). Attention-based VGG-16 model for COVID-19 chest X-ray image classification. Applied Intelligence, 51(5), 2850-2863. https://doi.org/10.1007/s10489-020-02055-x
Sodre, L. I., Gall, M. E. C., Elias, M. de B., de Oliveira, L. O., Lobo, F. A. T. F., Carias, R. B. V., & Teodoro, A. J. (2025). Osteogenic effects of bioactive compounds found in fruits on mesenchymal stem cells: A review. Nutrition Reviews, 83(4), 675-691. https://doi.org/10.1093/nutrit/nuae209
Sun, S., Cao, Z., Zhu, H., & Zhao, J. (2019). A survey of optimization methods from a machine learning perspective. arXiv. https://arxiv.org/abs/1906.06821
Taye, M. M. (2023). Theoretical understanding of convolutional neural network: Concepts, architectures, applications, future directions. Computation, 11(3), 52. https://doi.org/10.3390/computation11030052
Tirro, G., Conti Taguali, S., Pane, A., Riolo, M., Ezra, D., & Cacciola, S. O. (2024). Outbreak of Alternaria black spot of pomegranate (Punica granatum L.) in Italy as a consequence of unusual climatic conditions. Plants, 13(14), 2007. https://doi.org/10.3390/plants13142007
Valero-Mendoza, A. G., Melendez-Renteria, N. P., Chavez-Gonzalez, M. L., Flores-Gallegos, A. C., Wong-Paz, J. E., Govea-Salas, M., Zugasti-Cruz, A., & Ascacio-Valdes, J. A. (2023). The whole pomegranate (Punica granatum L), biological properties and important findings: A review. Food Chemistry Advances, 2, 100153. https://doi.org/10.1016/j.focha.2022.100153
Wardani, K. R. R., Suryalim, H., Engel, V. J. L., & Christian, H. (2023). Analisis pemilihan optimizer dalam arsitektur convolution neural network VGG16 dan Inception untuk sistem pengenalan wajah. JEPIN (Jurnal Edukasi dan Penelitian Informatika), 9(2).
Wibawa Rahayu, P., Sudipa, I. G. I., Suryani, Surachman, A., Achmad, R., Darmawiguna, I. G. M., Slamet, I., Harlina, S., & Maysanjaya, I. M. D. (2024). Buku ajar data mining (Efitra, Ed.). PT. Sonpedia Publishing Indonesia. https://www.researchgate.net/publication/377415198
Wowor, L. D. (2025). Implementation of grid search method for optimization in convolutional neural network model: Penerapan grid search method untuk optimasi pada model convolutional neural network. Jurnal Teknik Informatika.
Wu, F., & Lin, H. (2022). Effect of transfer learning on the performance of VGGNet-16 and ResNet-50 for the classification of organic and residual waste. Frontiers in Environmental Science, 10, 1043843. https://doi.org/10.3389/fenvs.2022.1043843
Wu, M., Liu, X., Gui, N., Yang, X., Tu, J., Jiang, S., & Zhao, Q. (2023). Prediction of the remaining time and time interval of pebbles in pebble bed HTGRs aided by CNN via DEM datasets. Nuclear Engineering and Technology, 55(1), 339-352. https://doi.org/10.1016/j.net.2022.09.019
Yang, S., Xiao, W., Zhang, M., Guo, S., Zhao, J., & Shen, F. (2023). Image data augmentation for deep learning: A survey. arXiv. https://arxiv.org/abs/2204.08610
Yuliany, S., Aradea, & Nur Rachman, A. (2022). Implementasi deep learning pada sistem klasifikasi hama tanaman padi menggunakan metode convolutional neural network (CNN). Jurnal Buana Informatika, 13(1), 54-65.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Muhammad Fawzan, Daniel Udjulawa

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Arcitech: Journal of Computer science and Artificial Intelligence agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).







