Klasifikasi Kerusakan Uang Rupiah Menggunakan CNN Dengan Arsitektur VGG16
DOI:
https://doi.org/10.29240/arcitech.v5i2.15125Keywords:
CNN, Deep Learning, Banknote Damage Classification, Rupiah, VGG16Abstract
This study developed a deep learning model using a Convolutional Neural Network (CNN) architecture with VGG16 to classify the level of damage to rupiah banknotes. Previous studies have focused more on recognizing denominations and detecting counterfeit money using CNN and transfer learning, while the classification of physical damage to rupiah banknotes is still limited, both locally and internationally, and often relies on special acquisition devices or template registration. The dataset used consists of images of rupiah banknotes grouped into three damage categories: >20%, >40%, and >50%. This dataset is divided into 80% for training data (537 images) and 20% for test data (135 images). To enrich the data variety, this study applied on-the-fly data augmentation techniques with rotation, zoom, and flipping during the training process. The experimental results show that this model achieves an accuracy of 93.33%, with excellent precision, recall, and F1-score values, especially in the >50% damage category. The use of the ADAM optimizer with a learning rate of 1e-3 proved to provide more stable and efficient training. Overall, this study shows that the application of CNN with the VGG16 architecture is effective in classifying rupiah currency damage and can contribute to the development of image processing technology, particularly for evaluating currency feasibility in real-world scenarios.
Downloads
References
Ahnaf, M. B., Rizal, A., & Prihatiningrum, N. (2024). Sistem pendeteksi kelayakan uang kertas rupiah metode Canny berbasis OpenCV. E-Proceeding of Engineering, 11(1), 468.
Alfaruq, M., Harun, H., & Fitri Habi, N. (2024). Jual beli uang rusak perspektif hukum bisnis syariah. Journal of Comprehensive Islamic Studies, 2(2), 221–236. https://doi.org/10.56436/jocis.v2i2.282
Aprillia, D., Rohana, T., Al Mudzakir, T., & Wahiddin, D. (2024). Deteksi nominal mata uang rupiah menggunakan metode convolutional neural network dan feedforward neural network. KLIK: Kajian Ilmiah Informatika dan Komputer, 4(4).
Bank Indonesia. (2011). Buku panduan uang rupiah: Ciri-ciri keaslian, standar visual kualitas rupiah dan daftar rupiah yang dicabut dan ditarik dari peredaran. Bank Indonesia.
Bank Indonesia. (n.d.). Informasi/ketentuan penukaran uang tidak layak edar/uang rusak.
Bareksa.com. (2017, February 15). BI musnahkan Rp210,49 triliun uang rusak. Bareksa.com. https://www.bareksa.com/berita/berita-ekonomi-terkini/2017-02-15/bi-musnahkan-rp21049-triliun-uang-rusak?
Gai, S., Xu, X., & Xiong, B. (2020). Paper currency defect detection algorithm using quaternion uniform strength. Neural Computing and Applications, 32(16), 12999–13016. https://doi.org/10.1007/s00521-020-04745-6
Hidayat, A. M. N., Antamil, A., & Zakiyah M, I. (2023). Identifikasi nominal mata uang rupiah bagi penyandang tunanetra dengan algoritma convolutional neural network berbasis Android. Journal Software, Hardware and Information Technology, 3(2), 60–65. https://doi.org/10.24252/shift.v3i2.102
Husen, D. (2024). Evaluasi teknik augmentasi data untuk klasifikasi tumor otak menggunakan CNN pada citra MRI. TEKNIMEDIA: Teknologi Informasi dan Multimedia, 5(2). https://doi.org/10.46764/teknimedia.v5i2.220
Ibrahim, M. M., Rahmadewi, R., & Nurpulaela, L. (2023). Pendeteksian nominal uang pada gambar menggunakan convolutional neural network: Integrasi metode pra-pemrosesan citra dan klasifikasi berbasis CNN. JATI (Jurnal Mahasiswa Teknik Informatika), 7(2), 1394–1400. https://doi.org/10.36040/jati.v7i2.6863
Ismiaty, A., Ht, R., Astuti, W. S., Wanto, A., & Solikhun, S. (2025). Optimisasi VGG16 dengan transfer learning dalam mendeteksi penyakit pada daun jagung. Bulletin of Computer Science Research, 5(5), 1049–1058. https://doi.org/10.47065/bulletincsr.v5i5.631
Khairu, D., Wantasen, F., Yusupa, A., & Taringan, V. (2025). Klasifikasi jenis uang kertas menggunakan convolutional neural network: A convolutional neural network-based approach for classifying types of paper currency, 2(2), 658–668.*
Kurniadi, D., Shidiq, R. M., & Mulyani, A. (2025). Perbandingan penggunaan optimizer dalam klasifikasi sel darah putih menggunakan convolutional neural network. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 14(1), 77–86. https://doi.org/10.22146/jnteti.v14i1.17162
Nandika, A. P., Imanullah, M., Wijaya, A., & Sunardi, D. (2025). Deteksi kondisi uang bagus dan rusak dengan pengolahan citra digital berbasis convolutional neural network (CNN). Jurnal Media Infotama, 21(1), 340–348.
Pachon, C. G., Ballesteros, D. M., & Renza, D. (2021). Fake banknote recognition using deep learning. Applied Sciences, 11(3), 1281. https://doi.org/10.3390/app11031281
Pachon, C. G., Ballesteros, D. M., & Renza, D. (2023). An efficient deep learning model using network pruning for fake banknote recognition. Expert Systems with Applications, 233, 120961. https://doi.org/10.1016/j.eswa.2023.120961
Pamungkas, O. E., Rahmawati, P., Supriadi, D. M., Khalika, N. N., Maliyano, T., Pangestu, D. R., Nugraha, E. S., Afandi, M. A., Wulandari, N., Goran, P. K., & Wicaksono, A. (2022). Classification of Rupiah to help blind with the convolutional neural network method. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(2), 259–268. https://doi.org/10.29207/resti.v6i2.3852
Rewina, A. E., Sulistyowati, S., Kurniawan, M., N, M. D., & Yunanda, S. F. (2024). Penerapan metode CNN (convolutional neural network) dalam mengklasifikasi uang kertas dan uang logam. TIN: Terapan Informatika Nusantara, 4(12), 778–785. https://doi.org/10.47065/tin.v4i12.5128
Sardika, R. P., & Widhiarso, W. (2025). Klasifikasi otomatis tingkat kerusakan retak bangunan pada citra digital menggunakan MobileNetV2 dan augmentasi data. Arcitech: Journal of Computer Science and Artificial Intelligence, 5(1), 108–124. https://doi.org/10.29240/arcitech.v5i1.13938
Sadewa, B. A., & Yamasari, Y. (2024). Implementasi deep transfer learning untuk klasifikasi nominal uang kertas rupiah. Journal of Informatics and Computer Science (JINACS), 5(04), 543–551. https://doi.org/10.26740/jinacs.v5n04.p543-551
Saputra, A. N., Handayani, H. H., Sukmawati, C. E., & Siregar, A. M. (2024). Model klasifikasi nominal mata uang kertas Republik Indonesia menggunakan convolutional neural network. Journal of Information System Research (JOSH), 6(1), 176–184. https://doi.org/10.47065/josh.v6i1.5927
Studi, P., Terapan, S., Rekayasa, T., Lunak, P., Informasi, J. T., & Bali, P. N. (2025). Perhitungan nominal uang secara cepat menggunakan metode You Only Look Once (YOLO). [Sumber publikasi tidak tersedia].
Zeng, W. (2024). Image data augmentation techniques based on deep learning : A survey. 21(February), 6190–6224.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Muhamad Rizvi Roshan, Hafiz Irsyad

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Arcitech: Journal of Computer science and Artificial Intelligence agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).







