Klasifikasi Kerusakan Uang Rupiah Menggunakan CNN Dengan Arsitektur VGG16

Authors

  • Muhamad Rizvi Roshan Universitas Multi Data Palembang, Indonesia
  • Hafiz Irsyad Universitas Multi Data Palembang, Indonesia

DOI:

https://doi.org/10.29240/arcitech.v5i2.15125

Keywords:

CNN, Deep Learning, Banknote Damage Classification, Rupiah, VGG16

Abstract

This study developed a deep learning model using a Convolutional Neural Network (CNN) architecture with VGG16 to classify the level of damage to rupiah banknotes. Previous studies have focused more on recognizing denominations and detecting counterfeit money using CNN and transfer learning, while the classification of physical damage to rupiah banknotes is still limited, both locally and internationally, and often relies on special acquisition devices or template registration. The dataset used consists of images of rupiah banknotes grouped into three damage categories: >20%, >40%, and >50%. This dataset is divided into 80% for training data (537 images) and 20% for test data (135 images). To enrich the data variety, this study applied on-the-fly data augmentation techniques with rotation, zoom, and flipping during the training process. The experimental results show that this model achieves an accuracy of 93.33%, with excellent precision, recall, and F1-score values, especially in the >50% damage category. The use of the ADAM optimizer with a learning rate of 1e-3 proved to provide more stable and efficient training. Overall, this study shows that the application of CNN with the VGG16 architecture is effective in classifying rupiah currency damage and can contribute to the development of image processing technology, particularly for evaluating currency feasibility in real-world scenarios.

Downloads

Download data is not yet available.

References

Ahnaf, M. B., Rizal, A., & Prihatiningrum, N. (2024). Sistem pendeteksi kelayakan uang kertas rupiah metode Canny berbasis OpenCV. E-Proceeding of Engineering, 11(1), 468.

Alfaruq, M., Harun, H., & Fitri Habi, N. (2024). Jual beli uang rusak perspektif hukum bisnis syariah. Journal of Comprehensive Islamic Studies, 2(2), 221–236. https://doi.org/10.56436/jocis.v2i2.282

Aprillia, D., Rohana, T., Al Mudzakir, T., & Wahiddin, D. (2024). Deteksi nominal mata uang rupiah menggunakan metode convolutional neural network dan feedforward neural network. KLIK: Kajian Ilmiah Informatika dan Komputer, 4(4).

Bank Indonesia. (2011). Buku panduan uang rupiah: Ciri-ciri keaslian, standar visual kualitas rupiah dan daftar rupiah yang dicabut dan ditarik dari peredaran. Bank Indonesia.

Bank Indonesia. (n.d.). Informasi/ketentuan penukaran uang tidak layak edar/uang rusak.

Bareksa.com. (2017, February 15). BI musnahkan Rp210,49 triliun uang rusak. Bareksa.com. https://www.bareksa.com/berita/berita-ekonomi-terkini/2017-02-15/bi-musnahkan-rp21049-triliun-uang-rusak?

Gai, S., Xu, X., & Xiong, B. (2020). Paper currency defect detection algorithm using quaternion uniform strength. Neural Computing and Applications, 32(16), 12999–13016. https://doi.org/10.1007/s00521-020-04745-6

Hidayat, A. M. N., Antamil, A., & Zakiyah M, I. (2023). Identifikasi nominal mata uang rupiah bagi penyandang tunanetra dengan algoritma convolutional neural network berbasis Android. Journal Software, Hardware and Information Technology, 3(2), 60–65. https://doi.org/10.24252/shift.v3i2.102

Husen, D. (2024). Evaluasi teknik augmentasi data untuk klasifikasi tumor otak menggunakan CNN pada citra MRI. TEKNIMEDIA: Teknologi Informasi dan Multimedia, 5(2). https://doi.org/10.46764/teknimedia.v5i2.220

Ibrahim, M. M., Rahmadewi, R., & Nurpulaela, L. (2023). Pendeteksian nominal uang pada gambar menggunakan convolutional neural network: Integrasi metode pra-pemrosesan citra dan klasifikasi berbasis CNN. JATI (Jurnal Mahasiswa Teknik Informatika), 7(2), 1394–1400. https://doi.org/10.36040/jati.v7i2.6863

Ismiaty, A., Ht, R., Astuti, W. S., Wanto, A., & Solikhun, S. (2025). Optimisasi VGG16 dengan transfer learning dalam mendeteksi penyakit pada daun jagung. Bulletin of Computer Science Research, 5(5), 1049–1058. https://doi.org/10.47065/bulletincsr.v5i5.631

Khairu, D., Wantasen, F., Yusupa, A., & Taringan, V. (2025). Klasifikasi jenis uang kertas menggunakan convolutional neural network: A convolutional neural network-based approach for classifying types of paper currency, 2(2), 658–668.*

Kurniadi, D., Shidiq, R. M., & Mulyani, A. (2025). Perbandingan penggunaan optimizer dalam klasifikasi sel darah putih menggunakan convolutional neural network. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 14(1), 77–86. https://doi.org/10.22146/jnteti.v14i1.17162

Nandika, A. P., Imanullah, M., Wijaya, A., & Sunardi, D. (2025). Deteksi kondisi uang bagus dan rusak dengan pengolahan citra digital berbasis convolutional neural network (CNN). Jurnal Media Infotama, 21(1), 340–348.

Pachon, C. G., Ballesteros, D. M., & Renza, D. (2021). Fake banknote recognition using deep learning. Applied Sciences, 11(3), 1281. https://doi.org/10.3390/app11031281

Pachon, C. G., Ballesteros, D. M., & Renza, D. (2023). An efficient deep learning model using network pruning for fake banknote recognition. Expert Systems with Applications, 233, 120961. https://doi.org/10.1016/j.eswa.2023.120961

Pamungkas, O. E., Rahmawati, P., Supriadi, D. M., Khalika, N. N., Maliyano, T., Pangestu, D. R., Nugraha, E. S., Afandi, M. A., Wulandari, N., Goran, P. K., & Wicaksono, A. (2022). Classification of Rupiah to help blind with the convolutional neural network method. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(2), 259–268. https://doi.org/10.29207/resti.v6i2.3852

Rewina, A. E., Sulistyowati, S., Kurniawan, M., N, M. D., & Yunanda, S. F. (2024). Penerapan metode CNN (convolutional neural network) dalam mengklasifikasi uang kertas dan uang logam. TIN: Terapan Informatika Nusantara, 4(12), 778–785. https://doi.org/10.47065/tin.v4i12.5128

Sardika, R. P., & Widhiarso, W. (2025). Klasifikasi otomatis tingkat kerusakan retak bangunan pada citra digital menggunakan MobileNetV2 dan augmentasi data. Arcitech: Journal of Computer Science and Artificial Intelligence, 5(1), 108–124. https://doi.org/10.29240/arcitech.v5i1.13938

Sadewa, B. A., & Yamasari, Y. (2024). Implementasi deep transfer learning untuk klasifikasi nominal uang kertas rupiah. Journal of Informatics and Computer Science (JINACS), 5(04), 543–551. https://doi.org/10.26740/jinacs.v5n04.p543-551

Saputra, A. N., Handayani, H. H., Sukmawati, C. E., & Siregar, A. M. (2024). Model klasifikasi nominal mata uang kertas Republik Indonesia menggunakan convolutional neural network. Journal of Information System Research (JOSH), 6(1), 176–184. https://doi.org/10.47065/josh.v6i1.5927

Studi, P., Terapan, S., Rekayasa, T., Lunak, P., Informasi, J. T., & Bali, P. N. (2025). Perhitungan nominal uang secara cepat menggunakan metode You Only Look Once (YOLO). [Sumber publikasi tidak tersedia].

Zeng, W. (2024). Image data augmentation techniques based on deep learning : A survey. 21(February), 6190–6224.

Downloads

Published

30-12-2025

How to Cite

Roshan, M. R., & Irsyad, H. (2025). Klasifikasi Kerusakan Uang Rupiah Menggunakan CNN Dengan Arsitektur VGG16. Arcitech: Journal of Computer Science and Artificial Intelligence, 5(2), 221–242. https://doi.org/10.29240/arcitech.v5i2.15125

Citation Check