Klasifikasi Otomatis Tingkat Kerusakan Retak Bangunan pada Citra Digital Menggunakan MobileNetV2 dan Augmentasi Data

Authors

  • Ricky Putra Sardika Universitas Multi Data Palembang, Indonesia
  • Wijang Widhiarso Universitas Multi Data Palembang, Indonesia

DOI:

https://doi.org/10.29240/arcitech.v5i1.13938

Keywords:

MobileNetV2, data augmentation, Classification, Optimizer

Abstract

Crack detection in buildings is a crucial step in maintaining structural integrity at an early stage and preventing further damage. This study aims to improve the accuracy of crack severity classification in digital images by applying five on-the-fly data augmentation techniques (flip, rotate, zoom, translation, and contrast) combined with the MobileNetV2 architecture. The augmentation techniques are performed dynamically during the training process without storing the transformed images, making the process more efficient in terms of storage, computation time, and adaptability to data variations. This study utilized a dataset of 900 images and achieved a classification accuracy of 93%, which is higher than the previous approach using MobileNetV1 with offline augmentation that only reached 89%. Previous research was limited to static augmentation approaches and less efficient CNN architectures. This study addresses those limitations by integrating dynamic augmentation and a lightweight architecture. It contributes to enhancing the efficiency and accuracy of crack image classification models in the context of limited data and low-computation systems, with strong potential for implementation in automated detection systems on mobile or edge computing devices.

Downloads

Download data is not yet available.

Author Biography

Wijang Widhiarso, Universitas Multi Data Palembang

Program Studi Magister Sistem Informasi

References

Andi, A., Mahendra, B., & Ridwan, M. (2023). Perencanaan Konstruksi Bangunan Gedung Enam Lantai. Akselerasi: Jurnal Ilmiah Teknik Sipil, 5(1), 66–73.

Aprilyanto, J., & Yohannes, Y. (2023). Implementasi Arsitektur VGG-Unet Dalam Melakukan Segmentasi Keretakan pada Citra Bangunan. MDP Student Conference, 2(1), 257–264. https://doi.org/10.35957/mdp-sc.v2i1.4311

Ariyanto, A. S. (2020). ANALISIS JENIS KERUSAKAN PADA BANGUNAN GEDUNG BERTINGKAT (Studi Kasus pada Gedung Apartemen dan Hotel Candiland Semarang). Bangun Rekaprima, 6(1), 45. https://doi.org/10.32497/bangunrekaprima.v6i1.1929

Asriani, F., Pamudji, G., Susilawati, H., & Anggoro, F. T. (2023). Aplikasi Convolutional Neural Networks (CNN) Untuk Klasifikasi Retakan Beton. Dinamika Rekayasa, 19(1), 9–17. http://dinarek.unsoed.ac.id

Aufar, Y., & Kaloka, T. P. (2022). Robusta coffee leaf diseases detection based on MobileNetV2 model. International Journal of Electrical and Computer Engineering, 12(6), 6675–6683. https://doi.org/10.11591/ijece.v12i6.pp6675-6683

Feroza, A. Z., Adiwijaya, N. O., & Putra, B. T. W. (2023). Development of a Web-based Application by Employing a Convolutional Neural Network (CNN) to Identify Pests and Diseases on Pakcoy (Brassica rapa subsp. chinensis). Pertanika Journal of Science and Technology, 31(6), 2873–2885. https://doi.org/10.47836/pjst.31.6.13

Fuadi, A., & Suharso, A. (2022). Perbandingan Arsitektur Mobilenet Dan Nasnetmobile Untuk Klasifikasi Penyakit Pada Citra Daun Kentang. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 7(3), 701–710. https://doi.org/10.29100/jipi.v7i3.3026

Munantri, N. Z., Sofyan, H., & Florestiyanto, M. Y. (2020). Aplikasi Pengolahan Citra Digital Untuk Identifikasi Umur Pohon. Telematika, 16(2), 97. https://doi.org/10.31315/telematika.v16i2.3183

Pane, N. A. (2024). Klasifikasi Kerusakan Pada Ban Menggunakan CNN Dengan Arsitektur MobileNet. Universitas Medan Area.

Pradika, S. I., Nugroho, B., & Puspaningrum, E. Y. (2020). Pengenalan Tulisan Tangan Huruf Hijaiyah Menggunakan Convolution Neural Network Dengan Augmentasi Data. Prosiding Seminar Nasional Informatika Bela Negara, 1, 129–136. https://doi.org/10.33005/santika.v1i0.35

Prayoga, A., Maimunah, Sukmasetya, P., Muhammad Resa Arif Yudianto, & Rofi Abul Hasani. (2023). Arsitektur Convolutional Neural Network untuk Model Klasifikasi Citra Batik Yogyakarta. Journal of Applied Computer Science and Technology, 4(2), 82–89. https://doi.org/10.52158/jacost.v4i2.486

Putri Ayuni, D., Jasril, Irsyad, M., Yanto, F., & Sanjaya, S. (2023). Augmentasi Data Pada Implementasi Convolutional Neural Network Arsitektur Efficientnet-B3 Untuk Klasifikasi Penyakit Daun Padi. ZONAsi: Jurnal Sistem Informasi, 5(2), 239–249. https://doi.org/10.31849/zn.v5i2.13874

Raup, A., Ridwan, W., Khoeriyah, Y., Supiana, S., & Zaqiah, Q. Y. (2022). Deep Learning dan Penerapannya dalam Pembelajaran. JIIP - Jurnal Ilmiah Ilmu Pendidikan, 5(9), 3258–3267. https://doi.org/10.54371/jiip.v5i9.805

Rizki, F., Kharisma Putra, M. P., Assuja, M. A., & Ariany, F. (2023). Implementasi Deep Leraning Lenet Dengan Augmentasi Data Pada Identifikasi Anggrek. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 4(3), 357–366. https://doi.org/10.33365/jatika.v4i3.3652

UNGKAWA, U., & HAKIM, G. AL. (2023). Klasifikasi Warna pada Kematangan Buah Kopi Kuning menggunakan Metode CNN Inception V3. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 11(3), 731. https://doi.org/10.26760/elkomika.v11i3.731

Wang, Y., Wang, J., Wang, C., Wen, X., Yan, C., Guo, Y., & Cao, R. (2022). MA-Xnet: Mobile-Attention X-Network for Crack Detection. Applied Sciences (Switzerland), 12(21). https://doi.org/10.3390/app122111240

Wang, Z., Yang, J., Jiang, H., & Fan, X. (2020). CNN training with twenty samples for crack detection via data augmentation. Sensors (Switzerland), 20(17), 1–17. https://doi.org/10.3390/s20174849

Downloads

Published

30-06-2025

How to Cite

Ricky Putra Sardika, & Widhiarso, W. (2025). Klasifikasi Otomatis Tingkat Kerusakan Retak Bangunan pada Citra Digital Menggunakan MobileNetV2 dan Augmentasi Data. Arcitech: Journal of Computer Science and Artificial Intelligence, 5(1), 108–124. https://doi.org/10.29240/arcitech.v5i1.13938

Issue

Section

Articles

Citation Check