Analisa dan Perancangan Machine Learning Untuk Mendeteksi Kegagalan Job di Apache Spark

Authors

  • Eri Dariato Universitas Dian Nusantara, Jakarta, Indonesia, Indonesia

DOI:

https://doi.org/10.29240/arcitech.v2i1.4124

Keywords:

Database, Artificial Intelligence, Apache Spark, Feature Engineering

Abstract

A collection of data stored in a database, so the longer the data, the bigger the data, because the data processed is very large, processing time in Apache Spark can take up to a dozen or tens of hours. Sometimes, the Apache Spark application even fails. Therefore, to minimize the waiting time that could have been avoided or reduced, artificial intelligence through Machine Learning will be used to detect whether an Apache Spark application will fail or run smoothly. Factors to determine this failure are called features and are generated through the feature engineering process. The purpose of this research is to design Machine Learning so that it is able to find out what features will determine the success or failure of the Apache Spark application. The research method used is the Prototyping process model.

Downloads

Download data is not yet available.

Author Biography

Eri Dariato, Universitas Dian Nusantara, Jakarta, Indonesia

Fakultas Teknik, Prodi Teknik Informatika

References

Apache Hadoop. (2022). Diambil kembali dari http://hadoop.apache.org/.

Apache Spark. (2022). Diambil kembali dari https://spark.apache.org/.

Armbrust, M., Huai, Y., Liang, C., Xin, R., & Zaharia, M. (2015, April 13). Deep Dive into Spark SQL’s Catalyst Optimizer. Diambil kembali dari https://databricks.com: https://databricks.com/blog/2015/04/13/deep-dive-into-spark-sqls-catalyst-optimizer.html

Chanowich, E. d. (2001). Query Optimization Advanced.

Goutam, S. (2021, Februari 12). Apache Spark Logical And Physical Plans. Diambil kembali dari https://blog.clairvoyantsoft.com/: https://blog.clairvoyantsoft.com/spark-logical-and-physical-plans-469a0c061d9e

Han, J. a. (2000). Data Mining Concepts & Techniques. Morgan Kaufmann Publishers.

Harianto Antonio, Novi Safriadi. (2012). Rancang Bangun Sistem Informasi Administrasi Informatika.

Korth, H. d. (1991). Database System Concepts. Singapura: McGraw Hill.

Leturgez, L. (2020, Juli 23). Spark’s Logical and Physical plans … When, Why, How and Beyond. Diambil kembali dari http://www.medium.com: https://medium.com/datalex/sparks-logical-and-physical-plans-when-why-how-and-beyond-8cd1947b605a

Ni Ketut Dewi Ari Jayanti, Ni Kadek Sumiari. (2018). Teori Basis Data. Yogyakarta: Penerbit ANDI.

Rahardja, U. R. (2017). Design of Business Intelligence in Learning Systems Using iLearning Media. Universal Journal of Management, 227-235.

Russell, S. J. (2016). Artificial Intelligence : a modern approach. Malaysia: Pearson Education Limited.

Sunarya, A. S. (2015). Sistem Pakar Untuk Mendiagnosa Gangguan Jaringan Lan. CCIT, 8(2), 1-11.

Wahono, R. S. (2014, Januari 10). romisatriawahono.net/2014/01/10/kontribusi-penelitian-dan-perbaikan-metode/. Diambil kembali dari romisatriawahono.net: https://romisatriawahono.net/2014/01/10/kontribusi-penelitian-dan-perbaikan-metode/

Y. Bengio, A. C. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1798–1828

Downloads

Published

30-06-2022

How to Cite

Dariato, E. (2022). Analisa dan Perancangan Machine Learning Untuk Mendeteksi Kegagalan Job di Apache Spark. Arcitech: Journal of Computer Science and Artificial Intelligence, 2(1), 1–18. https://doi.org/10.29240/arcitech.v2i1.4124

Issue

Section

Articles

Citation Check